24 Вспомогательное оборудование тэс: питательные, конденсатные, циркуляционные насосы, регенеративные подогреватели, деаэраторы и др.
Тепловая электростанция(ТЭС) - электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Доля вырабатываемой ими электроэнергии в России составляет около 80%. На тепловых электростанциях химическая энергия топлива преобразуется сначала в тепловую, затем в механическую, а затем в электрическую энергию.
Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут. Тепловые электрические станции подразделяют на конденсационные (КЭС), предназначенные для выработки только электрической энергии, и теплоэлектроцентрали (ТЭЦ), производящие кроме электрической тепловую энергию в виде горячей воды и пара. Крупные КЭС районного значения получили название Государственных районных электростанций (ГРЭС).
На рисунке 1представлены типичные упрощенные тепловые схемы КЭС на органическом топливе. По схеме рисунка1,аподвод теплоты к циклу осуществляется только при генерации пара и подогреве его до выбранной температуры перегреваtпер; по схеме рисунка1,б наряду с передачей теплоты при этих условиях, теплота подводится к пару и после того, как он отработал в части высокого давлении турбины.
Первую схему называют схемой без промежуточного перегрева, вторую – схемой с промежуточным перегревом пара. Тепловая экономичность второй схемы при одних и тех же начальных и конечных параметрах и правильном выборе параметров промежуточного перегрева выше.
По обеим схемам пар из парового котла 1 направляется в турбину 2, находящуюся на одном валу с электрогенератором 3. Отработавший пар конденсируется в конденсаторе 4, охлаждаемом циркулирующей в трубках технической водой. Конденсат турбины конденсатным насосом 5черезрегенеративные подогреватели 6подается вдеаэратор 8
Деаэраторслужит для удаления из воды растворенных в ней газов; одновременно в нем, так же как в регенеративных подогревателях, питательная вода подогревается паром, отбираемым для этого из отбора турбины. Деаэрация воды проводится для того, чтобы довести до допустимых значений содержание кислорода и углекислого газа в ней и тем самым понизить скорость коррозии в трактах воды и пара
Деаэрированная вода питательным насосом 9через подогреватели 10 подается в котельную установку. Конденсат греющего пара, образующийся в подогревателях 10, перепускает каскадно в деаэратор 8, а конденсат греющего пара подогревателей 6 подаетсядренажным насосом 7 в линию, по которой протекает конденсат из конденсатора 4.
Деаэратор и питательный насос делят схему регенеративного подогрева на группы ПВД (подогреватель высокого давления) и ПНД (подогреватель низкого давления).
Группа ПВДсостоит из двух-трех подогревателей с каскадным сливом дренажей вплоть до деаэратора. Деаэратор питается паром того же отбора, что и предвключенный ПВД..
Группа ПНДсостоит из трех-пяти регенеративных и двух-трех вспомогательных подогревателей.При наличии испарительной установки (градирни) конденсатор испарителя включается между ПНД
- 21 Общая структура водоснабжения промышленного предприятия.
- 22 Q-h характеристики турбомеханизмов.
- 23 Способы регулирования производительности турбомеханизмов.
- 1)Изменяя скорость(рис. 1)
- 24 Вспомогательное оборудование тэс: питательные, конденсатные, циркуляционные насосы, регенеративные подогреватели, деаэраторы и др.
- 25 Анализ режимов эксплуатации оборудования промышленных предприятий и систем коммунального хозяйства.
- 26 Задачи энергоаудита. Общие этапы энергоаудита и их содержание.
- 27.Анализ режимов работы трансформаторных подстанций и системы регулирования .
- 28 Анализ режимов работы компрессорного оборудования, системы разводки и потребления сжатых газов.
- 29 Измерительная энергетическая лаборатория, основные задачи и функции. Приборный состав лаборатории, варианты комплектации.
- 30 Автоматизированные системы контроля и учёта энергопотребления (аскуэ).
- 31 Технико-экономический анализ энергосберегающих мероприятий.
- 1)Описание существующей системы энергоснабжения
- 2)Анализ фактических эксплуатационных затрат.
- 3)Разработка технических условий и принятие основных технических решений
- 33 Общий подход к проектированию суим. Основные этапы исследования и проектирования суим. Стадии проектирования, регламентированные государственными стандартами.
- 34 Релейно-контакторные системы управления электроприводами постоянного и переменного тока.
- 1. Рксу ад с короткозамкнутым ротором
- 2. Рксу ад с фазным ротором
- 35 Системы стабилизации. Типовые методы улучшения динамических показателей су им: форсирование управляющего воздействия, компенсация больших постоянных времени (бпв) объекта управления.
- 1.Форсирование управляющего воздействия.
- 2. Компенсация бпв объекта управления
- 36 Принципы построения типовых систем регулирования температуры, давления, расхода и иных технологических координат.
- 37 Реверсивный вентильный электропривод. Совместное управление. Раздельное управление.
- 1.Совместное управление (включающие импульсы подаются на управляющие электроды вентилей обеих групп).
- 38 Методы синтеза цифровых су им. Метод дискретизации аналоговых регуляторов класса «вход/выход» (метод аналогий). Цифровой пид- регулятор.
- 39 Типовая методика структурно-параметрического синтеза контуров регулирования су им по желаемой передаточной функции. Привести пример синтеза.